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LETTER TO THE EDITOR 

Langevin and Fokker-Planck equations for kinetic growth and 
aggregation processes 

Yonathan Shapir 
Physics Department, Brookhaven National Laboratory, Upton, New York 11973, USA 

Received 5 July 1985 

Abstract. A theoretic approach to account for the intrinsic fluctuations of kinetic growth 
and aggregation processes in their equations of motion is presented. Langevin equations, 
with multiplicative noise terms, are derived for continuous variants of the Eden models 
and for the transparent diffusion-limited aggregation. The related Fokker-Planck equations 
are derived as well. Fluctuations are irrelevant for the Eden models but are probably 
relevant for the diffusion-limited aggregation. The possible use of the stochastic equations 
to regularise their effects in this latter case is briefly discussed. 

Different models of aggregating clusters and kinetic growth have attracted much 
attention recently. This interest was primarily stimulated by the introduction of the 
Witten-Sander model (Witten and Sander 1981,1983) for the diffusion-limited aggrega- 
tion (DLA). The clusters which are grown according to this process in numerical 
simulations (Witten and Sander 1981, 1983; see Family and Landau (1984) for many 
references) have a self-similar structure with a non-trivial fractal dimension d smaller 
than the dimensionality of the embedding space, d. The first real-space renormalisation 
calculation (Gould et a1 1983) led to the conclusion that their fractal dimension is 
different from that of branched-polymers configurations (Lubensky and Isaacson 1978, 
Parisi and Sourlas 1981, Shapir 1983). More theoretical works were based on mean-field 
equations of motion (Nauenberg er a1 1983, Ball et a1 unpublished). Their spherically 
symmetric solutions with d = d - 1 were argued to be unstable (Nauenberg 1983). 
From the beginning it was realised that these mean-field equations are not sufficient 
because they overlook the intrinsic fluctuations of the process which are essential to 
the formation of the fractal structure. Extensive numerical investigations (Witten 1985, 
Witten and Kantor unpublishedt) have been conducted to answer the question of what 
type of noise should be added to the mean-field equations in order to grow DLA types 
of clusters. A different theoretical approach which witnesses recent important progress 
is based on Hamiltonian and field-theoretic formulations (Parisi and Zhang 1985, 
Shapir and Zhang 1985, Peliti 1985). In the present work I provide the missing link 
between these two approaches. Some years ago Martin, Siggia and Rose (1973, hereafter 
referred to as MSR) showed how to obtain a generating function from the stochastic 
equation. Here I follow the reverse procedure: from the new field theories I deduce 
the Langevin and Fokker-Planck equations of different growth and aggregating 
processes. In particular, the exact form of multiplicative noise terms are derived. 
These novel stochastic formulations will be very useful to computer simulations and 

t I am thankful to these authors for communicating their results privately. 
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may also provide a new approach to regularisation and renormalisation as discussed 
briefly in the following. 

It is instructive to begin with the Eden (1961) mechanism which has attracted much 
attention by itself recently. In infinite number of dimensions (Parisi and Zhang 1984) 
and on the Cayley tree (Vannimenus et a1 1984) it coincides with the DLA model. Here 
we shall address other variants of this model, namely the transparent and the 
saturated Eden models. 

In the transparent model the time evolution of a connected cluster which consists 
of n i ( t )  particles at each site i and a given time t ,  is according to the following rule: 
each one of the particles on the nearest-neighbour sites may give birth to a new particle 
with probability a per unit time. Let us denote by 

the total number of particles on the neighbouring sites to site i. The average change 
in n i ( t )  

A n i ( ? ) =  n i ( t + A t ) - n i ( t )  

is 
- 
A n (  t )  = a N (  t ) A t .  

In the mean-field equation Ni(  t )  is also replaced by its average. If we define by p(  r, t )  
the local density of particles, the time derivative of its average p (  r, t )  in the mean-field 
approximation is 

In this mean-field equation A is a constant proportional to a and to the coordination 
number, which has also been absorbed into the effective lattice spacing a. Starting 
with the init‘ial conditions: 

the mean-field solution is (Parisi and Zhang 1985): 

A simple physical motivation to the way the fluctuations are introduced is as follows: 
the birth of the new particles are an independent event. Therefore, the mean square 
deviation in Ani ( t )  will be proportional in the continuum limit to its average: 

(the choice of the coefficient 2 will be explained in the following). The Langevin 
equation for the fluctuating density may thus be: 

fi ( r, t ) = A ( 1 + a ’ V 2 ) p  ( r, t ) + [ 2A ( 1 + a 2 V 2 ) p  ( r, t )] ”’[( r, t ) 

( t ( r ,  t ) >  = 0 

(8) 

(9) 

To prove that this conjecture is correct I first construct the MSR generating function 
by the introduction of an auxiliary field ;(r, t )  and the corresponding sources h(r ,  t )  

where [ ( r ,  t )  is a Gaussian white noise which obeys 

and ( [ ( r ,  t ) ( ( r ’ ,  t ‘ )  = 6 ( r  - r’)S( t - t ’ ) .  
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and k(r ,  t )  and average over the noise to obtain 

(the explicit dependence of the fields on the coordinates has been dropped). One may 
still discard the determinant which cancels equal-time loops (despite the multiplicative 
noise) with an adequate choice of the discrete lattice to start with. The effective 
instantaneous and local Liouvillian is: 

2[ p^, p ]  = -6b + ;A( 1 + a2V2)p + A;’( 1 + a2V2)p. ( 1 1 )  

Exactly the same Liouvillian is derived by the use of the Fock-space formalism 
(Doi 1976, Grassberger and Scheunert 1980) to an ensemble of identical particles P( i )  
which undergo the reaction: 

P ( i ) >  P ( i ) + P ( j )  (12) 

where i and j are (nearest-neighbour) N N  sites. This confirms the validity of (8). 

moments of p and 
example for ( b ( r ,  r)b(r’ ,  t ’ ) )  we find 

It is straightforward to derive a BBGKY type of hierarchy of equations for different 
just from averaging products of the equations of motion, for 

( p ( r ,  t ) P (  r’, t ’ ) )  = ( p ( r ,  t ) ) (  b ( r ’ ,  t‘)+(2b(r, t ) ) S ( r  - r ’ )6(  t - t ’ )  (13) 

(14) 

follows the Fokker-Planck equation in the It8 sense (see, e.g., Jouvet and Phythian 
1980): 

etc. The probability distribution 

W Y ( 4  t ) ,  t )  = ( 6 [ y ( r ,  t )  - d r ,  t)1)* 

As expected, the solution to this equation does not tend towards a normalisable 
equilibrium distribution. 

An alternative stochastic equation may be formulated with a pair of complex 
white-noise variables one additive and one multiplicative: 

(16) p ( r, t ) = A ( 1 + a 2 V 2 ) p  ( r, t )[ 1 + 7 ( r, t ) 3 + 7 ( r, t ) 

with the distribution: 

which yields the same Liouvillian ( 1 1 )  if the functional integration is restricted to the 
real axis Im p = Im p̂  = 0. 

In principle one could multiply the noise by a small coefficient and introduce it 
perturbatively. However, it is easy to check the irrelevance of the noise in the present 
case: not only A > 0 and the system is in the supercritical regime where MFT should 
hold but the diagrams generated by the Liouvillian ( 1  1 )  are tree-like and therefore this 
noise does not induce any harmful fluctuations. 

The situation is somewhat different in the saturated Eden model. It is defined as 
the transparent version discussed above but with a bounded number of particles on 
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each site. This is implemented by adding the reaction (12) which creates particles with 
probability a, the reaction 

2P( i )  + P( i) (18) 
P 

which annihilates them with probability p<< a. Due to this process the Liouvillian 
acquires a new term of the form: - (/3/2)( p* + 1);~’ .  The noise changes accordingly 
and the Langevin equation which foliows is 

P(r, t )  = A(l+  a2V2)dr,  t )  - (P/2)P2(C t )  

+[2h(l+a2V2)p(r,  t)-pp’(r, t)]”’((r, t ) .  (19) 

The mean-field solution to this equation without noise was discussed by Parisi and 
Zhang (1985). The diagrammatic expansion for the correlation functions does contain 
loops but since A > 0 this process is supercritical and mean-field theory is expected to 
describe it correctly, at least as long as the bulk properties are concerned. The cluster, 
therefore, will grow compact with d = d (Eden 1961) and the fluctuations will only 
affect its surface (Racz and Plischke 1983, 1985). 

We now turn to the transparent DLA. In this version of the Witten-Sander model 
the cluster is formed by n , ( t )  particles P ( i )  at each site at a given time. The whole 
cluster is immersed in a sea of diffusing particles D( i ) .  They are injected continuously 
from infinity and are transformed into cluster particles according to the reaction: 

P( i )  + o(j) G P ( i )  + P ( j )  (20) 

where i and j are nearest-neighbour sites. As explained very clearly by Peliti (1985) 
the Fock-space method is readily made for this model. Let us introduce the fields 
4(r,  t ) (4(r ,  t ) )  to represent the density field (and its conjugate field) of the diffusing 
particles. The effective Liouvillian (Peliti 1985) takes the form (C  is the diffusion 
constant) : 

y[ p, 6,4, 6]= -& - 64 + C6V24  + A (  p* - $)4( 1 + a2V2)p[l + ( 1  + a2V’)p*]. 

The simplest corresponding Langevin equations are 

(21) 

$(r, t ) =  CV24(r, t)-A4(r,  t)(l+a’V’)p(r, t ) [ l+q(r,  t ) ]  (220) 

(22b) 

where v(r, t )  and q t ( r ,  1 )  are a pair of conjugate complex white-noise variables with 
the distribution given by (17) .  

If we neglect terms proportional to V2p* (for simplicity and anyway they are probably 
irrelevant) we may derive the following (It6 sense) Fokker-Planck equation for the 
transparent DLA 

P (  r, t )  = A4(r, t ) (  1 + a’V’)p( r, t ) [  1 + 7 (r, t ) ]  + ( 1  + a2V2) q ’( r, t )  

for the probability distribution W( p,( r, t ) ,  4,( r, t ) ,  t )  of the solutions p,( r, t )  and 
&(r, t )  to the Langevin equations (22). 

The effects of the saturation may be introduced as before. Moreover, the discrete 
character of the noise may also be included in the field theory through terms which 
are quartic (or higher) in the auxiliary fields p* and 6. There is no a priori reason for 
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these terms to be irrelevant and the possibility that the transparent DLA discussed here 
and the opaque Witten-Sander (1983) model belong to two different universality 
classes cannot be excluded (Witten 1985, Witten and Kantor, unpublished). Since 
the spherically symmetric mean-field solutions are unstable we still lack a systematic 
perturbative scheme to approach the details of these questions. In particular it may 
imply that the renormalised equations of motion are qualitatively different from the 
microscopic ones. Clearly one has to look for non-perturbative methods. Such a 
method was suggested recently in the context of the stochastic static random-fields 
problem (Shapir 1984). In that approach the stochastic variables themselves are 
renormalised according to the response of the system to the perturbation. A similar 
self-consistent regularisation method may be the adequate one for the DLA model as 
well. The values of the exponents will then be selected as those which satisfy the 
self-consistent condition. 

To conclude, stochastic Langevin and Fokker-Planck equations for different growth 
and aggregating processes have been derived. This may be an important step forward 
in providing a theoretical framework to these most challenging models which, so far, 
have been approached mostly by numerical simulations. The fluctuations are irrelevant 
in the Eden mechanism but are pertinent to the aggregation processes of diffusing 
particles and an original renormalisation scheme, which may be based on the stochastic 
equations, will be required to extract their universal features. 

I am indebted to Y Kantor, A-M Tremblay, T A Witten and Y-C Zhang for most 
useful discussions and to L Peliti for sending me his work prior to publication. 

This work was supported by Division of Materials Sciences, US Department of 
Energy under contract DE-AC02-76CH00016. 
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